

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

B.Sc. [Three Year] Statistics [Minor]

(NEP 2020, CBCS – Autonomy 23 Pattern)

STRUCTURE OF STATISTICS SYLLABUS

Structure of the course for three years and the pattern of examination and question papers are as specified below

Semester	Paper code [23 patt]	Paper	Paper title	Credits	Mark	ŝ	
					CIA	ESE	Total
3	23SBST31MN	Ι	Descriptive Statistics-II	2	20	30	50
	23SBST32MN	II	Statistics Practical-I	2	20	30	50
	23SBST31VSC	III (VSC)	Data Handling using MS Excel	2	20	30	50
4	23SBST41MN	I	Discrete Probability Distributions-II	2	20	30	50
	23SBST42MN	II	Statistics Practical-II	2	20	30	50

CONTINUOUS INTERNAL EVALUATION (CIE) FOR B.Sc

For Continuous Internal Evaluation (CIE), Evaluation will be done continuously. Internal assessment will be of **20** marks for a paper of 50 Marks. These 20 marks are divided as follows:

 a) There will be compulsory Test on Demand MCQ Examination of 20 marks of each subject which would be converted into 05 Marks.

- b) Two Class Tests 10 Marks Each. Converted to 05 Marks.
- c) Mid Sem Exam of 20 Marks converted to 05 Marks
- d) Participation in two activities at department/ college level 05 Marks
- e) In case of students failing to score under category (d), the attendance can be considered to give marks.
- f) There will be a compulsory Mock Practical Examination, Viva Voce of subjects mentioned in for 20 Marks.
- g) The subject teacher needs to adopt anyone out of the following methods for internal assessment:

Written exam	Quiz
Presentations	Projects
Assignments	Tutorials
Oral examination	Open Book Test and Others

Table 7: Methods of Internal Assessment

1) **DURATION OF SEMESTER END EXAMINATION (FINAL):** Question papers will be set for Thirty Marks (One and Half Hour Duration) for Theory and Thirty Marks (Three and Half Hour) for Practical Examination.

Table 8: Criteria for Paper Setting of Internal Assessment and Semester End Examination

Knowledge	Understanding	Applications, Analysis, Problem Solving	Total Marks
50%	25%	25%	100%

2) STANDARD OF PASSING:

- A student must obtain a minimum of 40% marks in Continuous Internal Evaluation (CIE), and minimum 40% marks in Practical Examination and Semester End Examination (External Examination).
- Passing separately in Internal Assessment, Practical Examination and Semester End Examination is compulsory.
- The student has to secure at least 40 marks (40%) in the total assessment (50 Marks) for each subject.
- Students who are failed in Continuous Internal Evaluation (CIE) of any semester can reappear for the same in the next semester.

Offered as	Minor
Course/ Paper Title	Descriptive Statistics – II
Course Code	23SBST31MN
Semester	III
No. of Credits	2 (2 Units equivalent to 1 Credit)

PAPER-WISE DETAILED SYLLABUS

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To acquaint students with the concept of bivariate data
2.	To present to the students the methods of analysis of bivariate data and the related developments in Statistics.
3.	To acquaint students with computation of correlation coefficient for bivariate data and interpret it
4.	To familiarize students with fitting of linear, quadratic and exponential curves to the bivariate data.
5.	To introduce the students with the concept of index numbers, a concept from Econometrics.

Sr. No.	Learning Outcome
1.	Students will be acquainted with the data analysis of bivariate data
2.	Students will become aware about the correlation and regression analysis.
3.	Students will be acquainted with the computations of correlation and regression analysis techniques and interpretation of the results

Expected Course Specific Learning Outcome

Syllabus

Unit No	Title with Contents Correlation Analysis		No. of Lectures
Unit I			10
	1.	Bivariate data, Scatter diagram and interpretation.	3
		Concept of correlation between two variables, positive	
		correlation, negative correlation, no correlation.	
		Covariance between two variables: Definition,	
		computation, effect of change of origin and scale.	
	2.	Karl Pearson's coefficient of correlation (r):	4
		Definition, computation for ungrouped data and	
		interpretation. Properties:	
		(i) $-1 \le r \le 1$ (with proof),	
		(ii) Effect of change of origin and scale (with proof).	
	3.	Spearman's rank correlation coefficient: Definition,	3
		derivation of formula, computation and interpretation	
		(without ties). In case of ties, compute Karl	
		Pearson'scorrelation coefficient between ranks.	
		(Spearman's rank correlation coefficient formula with	
		correction for ties not expected.)	
Unit II	Fitting	g of Linear Regression Equation	10

·			
	1.	Concept of dependent and independent variables.	2
	2.	Identification of response and predictor variables and relation	2
		between them.	
	3.	Meaning of regression, difference between correlation and	6
		regression, Connection between correlation and regression.	
		Fitting of line $Y = a + bX$. a and b are estimated using least	
		square method. Regression coefficient. Explained and	
		unexplained variation, coefficient of determination, standard	
		error of an estimate of line of regression	
Unit III	Fitting	g of Curves	08
	1.	Necessity and importance of drawing second degree curve.	2
	2.	Fitting of second degree curve $Y=a+b X + cX^2$,	3
	3.	Fitting of exponential curves of the type $Y = ax^b$. In all these	3
		curves constants a, b, c are found out by the method of least	
		squares.	
Unit IV	Index	Numbers	08
	1.	Definition and Meaning, Introduction and scope of	2
		Index Numbers. Various types of Index Numbers	
		like Human Development Index, Happiness Index,	
		BSE sensitivity Index.	
	2.	Problems/considerations in the construction of index	1
		numbers.	
	3.	Laspeyre's, Paasche's and Fisher's Index numbers.	2
	4.	Consumer price index number: Considerations in its	2
		construction. Methods of construction of consumer	
		price index number - (i) family budget method (ii)	
		aggregate expenditure method.	
	5.	Shifting of base, splicing, deflating, purchasing	1
1			
		power (Only introduction).	

References:

- Agarwal, B. L. (2003). Programmed Statistics, Second Edition, New Age International Publishers, New Delhi.
- Goon,A.M., Gupta,M.K. and Dasgupta, B.(1983).Fundamentals of Statistics, Vol.1, Sixth Revised Edition, The World Press Pvt. Ltd., Calcutta.
- 3. Gupta,S.C.and Kapoor,V.K.(1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- 4. Gupta, S.C.and Kapoor, V.K. (1997). Fundamentals of Applied Statistics, Third Edition, Sultan Chand and Sons Publishers, New Delhi.
- Montgomery D.C, Peck E.A., Vining G.G.(2006).Introduction to Linear Regression Analysis, John Wiley and Sons
- 6. Purohit S.G., Gore S.D., Deshmukh S.R. (2008). Statistics Using R, Narosa Publishing House, New Delhi.
- 7. Sarma, K.V.S. (2001).Statistics Made it Simple: Do it yourself on PC. Prentice Hall of India, New Delhi.
- Snedecor G.W. and Cochran W.G. (1989).Statistical Methods, Eighth Ed. East-West Press, Pvt Ltd. New Delhi.

Offered as	Minor
Course/ Paper Title	Statistics Practical – I
Course Code	23SBST32MN
Semester	III
No. of Credits	2.0

Sr. No.	Objectives
1.	To use various graphical and diagrammatic techniques and
	interpretation
2.	To analyse data pertaining to discrete and continuous variables and
	to interpret the results
3.	To compute various measures of central tendency, dispersion,
	skewness and kurtosis
4.	To interpret summary statistics of computer output
5.	To summarize and analyze the data using computers

Sr. No.	Learning Outcome	
1.	Students will be able to use various graphical and diagrammatic	
	techniques and interpretation	
2.	Students will be able to compute various measures of central	
	tendency, dispersion, skewness and kurtosis	
3.	Students will be acquainted with the usage of computers for data	
	analysis	

S.No.	Title of the experiment	No. of Practicals
1	Diagrammatic representation of statistical data:	1
	simple and subdivided bar diagrams,	
	multiplebar diagram, percentage bar diagram,	
	piediagram.	
2	Diagrammatic representation of statistical data:	1
	simple and subdivided bar diagrams,	
	multiplebar diagram, percentage bar diagram,	
	piediagram. using Ms-Excel/Any statistical	
	software	
3	Graphical representation of statistical data:	1
	Histogram, frequency curve and ogive curves.	
	Determination of mode and median graphically.	
4	Graphical representation of statistical data:	1
	Histogram, frequency curve and ogive curves.	
	Determination of mode and median graphically.	
	Using Ms-Excel/Any statistical software	
5	Tabulation	1
6	Data Interpretation from various graphs and	1
	diagrams.	
7	Use of random number tables to draw	1
	SRSWOR, SRSWR, stratified sample and	
	systematic sample.	
8	Use of random number tables to draw	1
	SRSWOR, SRSWR, stratified sample and	
	systematic sample. Using MS-Excel/Any	
	statistical software	
9	Computation of measures of central tendency	1
	and dispersion (ungrouped data). Use of an	

	appropriate measure and interpretation of results and computation of partition values.	
10	Computation of Measures of skewness and kurtosis.	1
11	Computation of Measures of skewness and kurtosis, Boxplot.	1
12	Computation of summary statistics using Ms- Excel	1
13	Computation of summary statistics using PSPP Open source software	1

Offered as	VSC (Minor)
Course/ Paper Title	Data handling using MS Excel
Course Code	23SBST3VSC
Semester	III
No. of Credits	2 (3 Units equivalent to 1 Credit)

Sr. No.	Objectives	
1.	This course is designed to introduce MS-Excel to the students	
2.	It will enable students to understand basic concept of MS-Excel.	
3.	It will help students to represent the data in pictorial forms.	

Sr. No.	Learning Outcome
1.	Students will have learned to open the Excel spread sheet and are
	able to enter the data in worksheet.
2.	They will be able to represent data into charts, diagrams, graphs, etc.
3.	They can perform various mathematical calculations and can learn
	the use of excel as calculator.
4.	They can perform various statistical calculations.

Syllabus

Unit No	Title with Contents	No. of Lectures
Unit I	Introduction to MS-Excel	2
	Ribbon tabs, Ribbon bar, Understanding the worksheet	Approx 1
	(Rows and Columns, Sheets, Work- books), Active Cell,	lecture per
	Columns, Rows, Fill Handle, Address Bar, Formula Bar,	section
	Title Bar, File Menu, Quick Access Toolbar, Ribbon Tab,	
	Worksheet Tab, Status Bar.	
	Data Entry in MS Excel.	
Unit II	Microsoft Excel Basic Functions	2
	SUM, COUNT, AVERAGE, MIN, MAX, TIME, DATE,	
	LEFT, RIGHT, IF, RAND etc.	
Unit III	Visualization of Data	4
	Diagrammatic representation of statistical data: simple and	
	subdivided bar diagrams, multiple bar diagram, percentage bar	
	diagram, pie diagram.	
Unit IV	Presentation of Data	6
	Graphical representation of statistical data: Histogram, frequency	
	curve and ogive curves. Determination of mode and median	
	graphically.	
Unit V	Statistical Computations	6
	Computation of summary statistics, mean, mode, median, partition	
	values, variance, standard deviation, absolute deviation, Range, etc.	
	Scatter diagram, correlation coefficient, fitting of a line of regression,	
	fitting of second degree curve	
Unit VI	Problem solving with MS-Excel	10
	Computations using basic mathematical and Statistical functions. Diagrammatic representation of data. Graphical representation of frequency data. Computations of correlation coefficients and curve fitting.	

References:

1. Michael Alexander and John Walkenbach (2013), Microsoft Excel Dashboards and Reports, 2nd Edition, Wiley.

- 2. Greg Harvey (2019). Microsoft Excel 2019 All-in-one for Dummies, Wiley
- 3. John Walkenbach (2018), Excel 2016 Bible , Wiley
- 4. Schmuller, Joseph (2020), Statistical Analysis with Excel, 4th Edition, Wiley

Offered as	Minor
Course/ Paper Title	Discrete Probability Distributions-II
Course Code	23SBST41MN
Semester	IV
No. of Credits	2 (2.5 Units equivalent to 1 Credit)

Sr. No.	Objectives
1.	To introduce the students with the concept of bivariate discrete
	probability distributions.
2.	To acquaint students with the application of standard discrete
	probability distributions defined on countable infinite sample space
	to different real life situations.
3.	To acquaint students to with the inter-relationship between different
	discrete probability distributions.
4.	To familiarize students with the concept of mathematical
	expectation of bivariate discrete random variable.

Sr. No.	Learning Outcome
1.	Students will be acquainted with the understanding of the bivariate
	probability distributions.
2.	Students will become aware about the computation of bivariate
	probabilities.
3.	Students will be acquainted with computation of mathematical
	expectation in case of bivariate discrete random variables.

Syllabus

Unit No		Title with Contents	No. of Lectures
Unit I	Some	Some Standard Discrete Probability Distributions	
	1.	Poisson distribution: p.m.f., m.g.f. and c.g.f. Moments,	8
		mean, variance, skewness and kurtosis. Situations where	
		this distribution is applicable. Additive property for	
		Poisson distribution.	
	2.	Geometric distribution: p.m.f., Mean, variance,	8
		m.g.f. and c.g.f. Situations where this distribution is	
		applicable. Lack of memory property.	
Unit II	Bivari	ate Discrete Probability Distribution	06
	1.	Definition of two-dimensional discrete random	1
		variable, its joint p.m.f. and its distribution	
		function and their properties.	
	2.	Computation of probabilities of events in bivariate probability	2
		distribution.	
	3.	Concepts of marginal and conditional probability	2
		distributions.	
	4.	Independence of two discrete random variables based on joint	1
		and marginal p.m.f.s	
Unit III	Mathe	ematical Expectation (Bivariate Random Variable)	14
	1.	Definition of raw and central moments, m.g.f, c.g.f.	2
	2.	Theorems on expectations of sum and product of	4
		two jointly distributed random variables.	
	3.	Conditional expectation.	2
	4.	Definitions of conditional mean and conditional variance.	2
	5.	Definition of covariance, coefficient of correlation,	2
		independence and un-correlatedness of two variables.	
	6.	Variance of linear combination of variables Var(aX+bY).	2

References:

- 1. Agarwal B. L. (2003). Programmed Statistics, second edition, New Age International Publishers, New Delhi.
- Gupta, S.C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- Hoel P. G. (1971). Introduction to Mathematical Statistics, John Wiley and Sons, NewYork.
- Hogg,R.V. and Craig R.G.(1989).Introduction to Mathematical Statistics, Ed. Mac Millan Publishing Co., NewYork.
- Mayer, P. (1972). Introductory Probability and Statistical Applications, Addison Wesley Publishing Co., London.
- Mood A.M. and Graybill F.A.and Boes D.C.(1974).Introduction to the Theory of Statistics, Ed. 3, McGraw Hill Book Company.
- Ross S. (2002). A First Course in Probability, Sixth Edition, Pearson Education, Inc.and Dorling Kindersley Publishing, Inc.

Reference Websites for Paper I and Paper II:

- 1.www.stats.unipune.ac.in [100Datasets for Statistics Education by Dr. Anil P. Gore, Dr. Mrs. S. A. Paranjpe and Madhav B. Kulkarni available in ISPS folder].
- 1. www.freestatistics.tk(NationalStatisticalAgencies)
- 2. www.psychstat.smsu.edu/sbk00.htm(Onlinebook)
- 3. www.bmj.bmjournals.com/collections/statsbk/index.shtml
- 4. www.statweb.calpoly.edu/bchance/stat-stuff.html
- 5. www.amstat.org/publications/jse/jse-data-archive.html(International journal on teaching and learning of statistics)
- 6. www.amstat.org/publications/chance(Chancemagazine)
- 7. www.statsci.org/datasets.html(Datasets)

- 8. www.math.uah.edu/stat(VirtuallaboratoriesinStatistics)
- 9. www.amstat.org/publications/stats(STATS:themagazineforstudentsofStatistics)
- 10. <u>www.stat.ucla.edu/cases</u>(CasestudiesinStatistics).
- 11. www.statsoft.com
- 12. www.statistics.com
- 13. www.indiastat.com
- 14. www.unstat.un.org
- 15. www.stat.stanford.edu
- 16. www.statpages.net
- 17. www.wto.org
- 18. www.censusindia.gov.in
- 19. www.mospi.nic.in
- 20. www.statisticsofindia.in
- 21. <u>www.nationmaster.com</u> (Population studies)

Offered as	Minor
Course/ Paper Title	Statistics Practical – II
Course Code	23SBST42MN
Semester	IV
No. of Credits	2.0

Sr. No.	Objectives
1.	To compute correlation coefficient, regression coefficients
2.	To compute probabilities of bivariate distributions
3.	To fit binomial and Poisson distributions to the given data
4.	To compute probabilities of bivariate distributions
5.	To use computer software to fit the curves to the given numerical
	data

Sr. No.	Learning Outcome
1.	Students will be able to correlation coefficient along with graphical
	representation of correlation with interpretation
2.	Students will be able to fit line of regression to the given data
3.	Students will be acquainted with the fitting of curves as a part of
	data analysis

S.No.	Title of the experiment	No. of Practicals
1	Scatter diagram, correlation coefficient (ungrouped data).	1
2	Fitting of line of regression of Y on X	1

3	Fitting of second degree curve	1
4	Fitting of exponential curve of the type $Y = ax^b$	1
5	Fitting of Binomial distribution and	1
	computation of expected frequencies.	
6	Applications of Binomial and	1
	hypergeometric distributions.	
7	Fitting of Poisson distribution and	1
	computation of expected frequencies.	
8	Index numbers.	1
9	Scatter diagram, correlation coefficient using	1
	Ms-excel/ Any statistical software &	
	interpretation.	
10	Fitting of a line of regression using Ms-excel /	1
	Any statistical software & interpretation.	
11	Fitting of second degree	1
	curve using Ms-excel / Any statistical	
	software & interpretation.	
12	Fitting of exponential curve using Ms-excel /	1
	Any statistical software & interpretation.	